MATH4060 Tutorial 6

2 March 2023

Problem 1 (Chap 7, Ex 1). Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers such that the partial sums $A_{n}=a_{1}+\cdots+a_{n}$ are bounded. Prove that the Dirichlet series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

converges for $\operatorname{Re}(s)>0$ and defines a holomorphic function in this half-plane.
To apply Theorem 5.2 of Chapter 2, we want to show that the series is uniformly convergent on any compact subset of the half-plane. Assume $\left|A_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Using summation by parts, for $N \in \mathbb{N}$, we have

$$
\sum_{n=1}^{N} \frac{a_{n}}{n^{s}}=\frac{A_{N}}{N^{s}}+\sum_{n=1}^{N-1} A_{n}\left(n^{-s}-(n+1)^{-s}\right)
$$

Since $\left|A_{N} / N^{s}\right| \leq M / N^{\operatorname{Re}(s)} \rightarrow 0$ uniformly on any closed half-plane $\operatorname{Re}(s) \geq \delta>0$ as $N \rightarrow \infty$, it suffices to show that the series $\sum A_{n}\left(n^{-s}-(n+1)^{-s}\right)$ is uniformly convergent on any compact subset of $\operatorname{Re}(s)>0$. Let $g(z)=z^{-s}$ so that $g^{\prime}(z)=-s z^{-s-1}$. By considering $z(t)=n+t, t \in[0,1]$, we have

$$
\left.\mid(n+1)^{-s}-n^{-s}\right)\left|=\left|\int_{0}^{1} g^{\prime}(z(t)) z^{\prime}(t) d t\right| \leq|s| \int_{0}^{1}(n+t)^{-\operatorname{Re}(s)-1} d t \leq \frac{|s|}{n^{\operatorname{Re}(s)+1}}\right.
$$

On any compact set $K,|s| \leq B$ and $\operatorname{Re}(s) \geq \delta$ for some $B, \delta>0$, so

$$
\sum_{n=1}^{\infty}\left|A_{n}\left(n^{-s}-(n+1)^{-s}\right)\right| \leq \sum_{n=1}^{\infty} \frac{M|s|}{n^{\operatorname{Re}(s)+1}} \leq M B \sum_{n=1}^{\infty} \frac{1}{n^{\delta+1}}
$$

is uniformly convergent on K.

Problem 2 (Chap 7, Ex 5). Consider the following function

$$
\tilde{\zeta}(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{s}}
$$

(a) Prove that the series defining $\tilde{\zeta}$ converges for $\operatorname{Re}(s)>0$ and defines a holomorphic function in that half-plane.
(b) Show that for $s>1$ one has $\tilde{\zeta}(s)=\left(1-2^{1-s}\right) \zeta(s)$.
(c) Conclude, since $\tilde{\zeta}$ is given as an alternating series, that ζ has no zeros on the segment $0<s<1$. Extend this last assertion to $s=0$ by using the functional equation.
(a) Since partial sums of $\sum(-1)^{n+1}$ are certainly bounded, the previous problem applies.
(b) On $s>1$, as $\zeta(s)$ and $\tilde{\zeta}(s)$ are absolutely convergent (as series), we compute that

$$
\zeta(s)-\tilde{\zeta}(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}-\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{s}}=\sum_{n=1}^{\infty} \frac{2}{(2 n)^{s}}=2^{1-s} \zeta(s)
$$

(c) Notice that at $s=1$, the simple pole of $\zeta(s)$ cancels with the zero of $1-2^{1-s}$, so both sides of the identity in (b) are holomorphic functions on $\operatorname{Re}(s)>0$ that agree on $s>1$. Thus the identity holds on the whole half-plane. Focusing on $0<s<1$, we have

$$
\frac{1}{(2 n-1)^{s}}-\frac{1}{(2 n)^{s}}>0
$$

for $n \in \mathbb{N}$, so $\tilde{\zeta}(s)>0$, and hence $\zeta(s) \neq 0$ on $0<s<1$ by the identity. Finally, using the functional equation

$$
\zeta(s)=\pi^{s-1 / 2} \frac{\Gamma((1-s) / 2)}{\Gamma(s / 2)} \zeta(1-s)
$$

we see that at $s=0$, the simple pole of $\zeta(1-s)$ cancels with the simple zero of $1 / \Gamma(s / 2)$, so the RHS is nonzero. This concludes that $\zeta(s) \neq 0$ on $[0,1)$.

Problem 3 (cf. Chap 7, Ex 8). Show that ζ has infinitely many zeros in the critical strip $0 \leq \operatorname{Re}(s) \leq 1$.

We first prove that the entire function $\tilde{\xi}=s(1-s) \xi(s)$ has growth order 1. To show that $\rho_{\tilde{\xi}} \leq 1$, we shall use the representation

$$
\xi(s)=\frac{1}{s-1}-\frac{1}{s}+\int_{1}^{\infty}\left(u^{-s / 2-1 / 2}+u^{s / 2-1}\right) \psi(u) d u
$$

where $\psi(u)=\sum_{n=1}^{\infty} e^{-\pi n^{2} u}$. Because $s(1-s)$ is a polynomial, it suffices to show that the integral term in $\xi(s)$ defines an entire function of growth ≤ 1. For $s=\sigma+i t \in \mathbb{C}$, take any $k \in \mathbb{N}$ such that $(|\sigma|+1) / 2 \leq k \leq|\sigma|+2$, then

$$
\begin{aligned}
\int_{1}^{\infty}\left|\left(u^{-s / 2-1 / 2}+u^{s / 2-1}\right) \psi(u)\right| d u & \leq \int_{1}^{\infty}\left(u^{-(\sigma-1) / 2-1}+u^{\sigma / 2-1}\right) \psi(u) d u \\
& \leq 2 \int_{1}^{\infty} u^{k-1} \sum_{n=1}^{\infty} e^{-\pi n^{2} u} d u \\
& \leq 2 \sum_{n=1}^{\infty} \int_{0}^{\infty} u^{k-1} e^{-\pi n^{2} u} d u \\
& =2 \sum_{n=1}^{\infty} \frac{1}{\left(\pi n^{2}\right)^{k}} \int_{0}^{\infty} u^{k-1} e^{-u} d u \\
& \leq C \Gamma(k)=C(k-1)! \\
& \leq C e^{(k-1) \log (k-1)} \leq C e^{(|\sigma|+1) \log (|\sigma|+1)}
\end{aligned}
$$

This shows that growth defined by the integral is ≤ 1. On the other hand, we want to show that $\rho_{\tilde{\xi}} \geq 1$: using the defining equation for ξ, we have

$$
\tilde{\xi}(s)=s(1-s) \pi^{-s / 2} \Gamma(s / 2) \zeta(s) .
$$

Consider s along the positive real axis, more specifically take $s=2 m$ for $m \in \mathbb{N}$. Note that ${ }^{1} \zeta(2 m) \rightarrow 1$ as $m \rightarrow \infty$. So if $\left|\pi^{-s / 2} \Gamma(s / 2)\right| \leq A e^{B|s|^{\rho}}$, we have

$$
\frac{(m-1)!}{\pi^{m} e^{2^{\rho} B m^{\rho}}} \leq A
$$

for all m. Taking $m \rightarrow \infty$ shows that $\rho>1$ (e.g. by ratio test). This concludes that the growth order of $\tilde{\xi}$ is exactly 1 .

Next, observe that $\tilde{\xi}$ satisfies the following properties:

[^0]- $\tilde{\xi}$ is an entire function with zeros precisely the zeros of $\zeta(s)$ in the critical strip: this follows directly from the defining equation of ξ. (So it suffices to show that the zeros of $\tilde{\xi}$ is infinite.)
- $\tilde{\xi}(s)=s(1-s) \xi(s)$ satisfies $\tilde{\xi}(s)=\tilde{\xi}(1-s)$.

Consider the function $F(s)=\tilde{\xi}(s+1 / 2)$. By the above, this an even entire function. Define $G(s)=F\left(s^{1 / 2}\right)$, which is also entire by an argument as in Tutorial 2 (Problem 3, Step 2) because F is even. Since F has order $1, G$ has order $1 / 2$. The following lemma shows that G (and so F and $\tilde{\xi}$) have infinitely many zeros, and thus completes the proof.
Lemma (cf. Chap 5, Ex 14). If h is entire and of growth order ρ that is non-integral, then h has infinitely many zeros.

Indeed, if h has finitely many zeros, Hadamard's theorem implies that it can be written as $h(z)=p(z) e^{q(z)}$. But the RHS has growth order $\operatorname{deg} q(\mathrm{Ex}!)$, so a contradiction to the assumption ρ is non-integral.

[^0]: ${ }^{1}$ e.g. Using Riemann sums, one has $1+\int_{2}^{\infty} t^{-p} d t \leq \sum_{n=1}^{\infty} n^{-p} \leq 1+\int_{1}^{\infty} t^{-p} d t$ for $p>1$.

